Macroalgae-Based Bioethanol

Author:

Kolpe Sakshi1,Khade Shankar Mukundrao1ORCID,Nile Shivraj2

Affiliation:

1. Ajeenkya D.Y. Patil University, India

2. Zhejiang Chinese Medical University, Hangzhou, China

Abstract

The chapter discusses the methods effective for the extraction of useful energy from the macroalgae biomass including liquefaction, anaerobic digestion, fermentation to biobutanol, trans-esterification to biodiesel, pyrolysis, direct combustion, fermentation to bioethanol, and gasification. However, if the algae are suited for the production of biodiesel, they can be studied from the content of their triacylglycerols (TAGs). Due to having high fatty acid content, they have a high conversion rate to biodiesel, and the lack of sulphur, phosphorus, and nitrogen also aids in the conversion. This chapter highlights the limitations and suitability of macroalgae for the conversion process in reference to chemical composition, process optimization, and cost effectiveness. It is concluded that bio-oils and bioethanol produced from wet macroalgae are considered over biodiesel production because of high lipid content of microalgae biomass. Moreover, the chapter considers electricity production from the dry mass as it would turn profitable, and this can be achieved from fast-growing macroalgae like “Ulva.”

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3