Detection and Classification of Dense Tomato Fruits by Integrating Coordinate Attention Mechanism With YOLO Model

Author:

Appe Seetharam Nagesh1,Arulselvi G.1,G. N. Balaji2ORCID

Affiliation:

1. Annamalai University, India

2. Vellore Institute of Technology, India

Abstract

Real-time detection of objects is one of the important tasks of computer vision applications such as agriculture, surveillance, self-driving cars, etc. The fruit target detection rate based on traditional approaches is low due to the complex background, substantial texture interference, partial occlusion of fruits, etc. This chapter proposes an improved YOLOv5 model to detect and classify the dense tomatoes by adding the coordinate attention mechanism and bidirectional pyramid network. The coordinate attention mechanism is used to detect and classify the dense tomatoes, and bidirectional pyramid network is used to detect the tomatoes at different scales. The proposed model produces good results in detecting the small dense tomatoes with an accuracy of 87.4%.

Publisher

IGI Global

Reference26 articles.

1. A Deep Convolutional Extreme Machine Learning Classification Method to Detect Bone Cancer from Histopathological Images.;D.Anand;International Journal of Intelligent Systems and Applications in Engineering,2022

2. Colour-agnostic shape-based 3D fruit detection for crop harvesting robots

3. Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. https://doi.org//arXiv.2004.1093410.48550

4. Effective Feature Fusion Network in BIFPN for Small Object Detection

5. Automation in Agriculture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances and Strategies in Addressing Plant Health Challenges;Advances in Medical Technologies and Clinical Practice;2024-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3