Effective Technique to Reduce the Dimension of Text Data

Author:

Guru D.S.1,Swarnalatha K.2,Kumar N. Vinay1ORCID,Anami Basavaraj S.3

Affiliation:

1. Department of Studies in Computer Science, University of Mysore, Mysore, India

2. MIT Thandavapura, India

3. Karnataka Lingayat Education Institute of Technology, Karnataka, India

Abstract

In this article, features are selected using feature clustering and ranking of features for imbalanced text data. Initially the text documents are represented in lower dimension using the term class relevance (TCR) method. The class wise clustering is recommended to balance the documents in each class. Subsequently, the clusters are treated as classes and the documents of each cluster are represented in the lower dimensional form using the TCR again. The features are clustered and for each feature cluster the cluster representative is selected and these representatives are used as selected features of the documents. Hence, this proposed model reduces the dimension to a smaller number of features. For selecting the cluster representative, four feature evaluation methods are used and classification is done by using SVM classifier. The performance of the method is compared with the global feature ranking method. The experiment is conducted on two benchmark datasets the Reuters-21578 and the TDT2 dataset. The experimental results show that this method performs well when compared to the other existing works.

Publisher

IGI Global

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference35 articles.

1. Mining Text Data

2. Text feature selection using ant colony optimization.;M. H.Aghdam;Expert Systems with Applications,2009

3. Distributional clustering of words for text classification

4. Distributional word Clusters versus Words for Text Categorization;R.Bekkerman;Journal of Machine Learning Research,2003

5. Supervised term weighting for automated text categorization

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3