Alleviating Long-Tailed Image Classification via Dynamical Classwise Splitting

Author:

Yuan Ye1,Wang Jiaqi1,Xu Xin1,Li Ruoshi1,Zhu Yongtong1,Wan Lihong1,Li Qingdu1,Liu Na1

Affiliation:

1. Institute of Machine Intelligence, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

With the rapid increase in data scale, real-world datasets tend to exhibit long-tailed class distributions (i.e., a few classes account for most of the data, while most classes contain only a few data points). General solutions typically exploit class rebalancing strategies involving resampling and reweighting based on the sample number for each class. In this work, we explore an orthogonal direction, category splitting, which is motivated by the empirical observation that naive splitting of majority samples could alleviate the heavy imbalance between majority and minority classes. To this end, we propose a novel classwise splitting (CWS) method built upon a dynamic cluster, where classwise prototypes are updated using a moving average technique. CWS generates intra-class pseudo labels for splitting intra-class samples based on the point-to-point distance. Moreover, a group mapping module was developed to recover the ground truth of the training samples. CWS can be plugged into any existing method as a complement. Comprehensive experiments were conducted on artificially induced long-tailed image classification datasets, such as CIFAR-10-LT, CIFAR-100-LT, and OCTMNIST. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

Funder

Young Scientists Fund of the National Natural Science Foundation of China

Pujiang Talents Plan of Shanghai

Artificial Intelligence Innovation and Development Special Fund of Shanghai

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3