Near Candidate-Less Apriori with Tidlists and Other Apriori Implementations

Author:

Abstract

In this study we implemented four different versions of Apriori, namely, basic and basic multi-threaded, bloom filter, trie, and count-min sketch, and proposed a new algorithm – NCLAT (Near Candidate-Less Apriori with Tidlists). We compared the runtimes and max memory usages of our implementations among each other as well as with the runtime of Borgelt’s Apriori implementation in some of the cases. NCLAT implementation is more efficient than the other Apriori implementations that we know of in terms of the number of times the database is scanned, and the number of candidates generated. Unlike the original Apriori algorithm which scans the database for every level and creates all of the candidates in advance for each level, NCLAT scans the database only once and creates candidate itemsets only for level one but not afterwards. Thus the number of candidates created is equal to the number of unique items in the database.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3