Efficient Implementations for UWEP Incremental Frequent Itemset Mining Algorithm

Author:

Bicer Mehmet1,Indictor Daniel2,Yang Ryan3,Zhang Xiaowen4

Affiliation:

1. Graduate Center, City University of New York, USA

2. Columbia University, USA

3. Massachusetts Institute of Technology, USA

4. College of Staten Island, City University of New York, USA

Abstract

Association rule mining is a common technique used in discovering interesting frequent patterns in data acquired in various application domains. The search space combinatorically explodes as the size of the data increases. Furthermore, the introduction of new data can invalidate old frequent patterns and introduce new ones. Hence, while finding the association rules efficiently is an important problem, maintaining and updating them is also crucial. Several algorithms have been introduced to find the association rules efficiently. One of them is Apriori. There are also algorithms written to update or maintain the existing association rules. Update with early pruning (UWEP) is one such algorithm. In this paper, the authors propose that in certain conditions it is preferable to use an incremental algorithm as opposed to the classic Apriori algorithm. They also propose new implementation techniques and improvements to the original UWEP paper in an algorithm we call UWEP2. These include the use of memorization and lazy evaluation to reduce scans of the dataset.

Publisher

IGI Global

Subject

Cardiology and Cardiovascular Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PHUI-GA: GPU-Based Efficiency Evolutionary Algorithm for Mining High Utility Itemsets;Journal of Systems Engineering and Electronics;2024-08

2. Bibliometric Analysis of Published Literature on the Pharmaceutical Supply Chain;International Journal of Applied Logistics;2022-09-16

3. Education Platform System on Account of Association Rule Algorithm;Proceedings of the 6th International Conference on Digital Technology in Education;2022-09-16

4. Occupancy‐based utility pattern mining in dynamic environments of intelligent systems;International Journal of Intelligent Systems;2022-01-03

5. Near Candidate-Less Apriori with Tidlists and Other Apriori Implementations;International Journal of Applied Logistics;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3