Machine Learning-Driven Virtual Counterparts for Climate Change Modeling

Author:

Soosai Anandaraj A. Peter1,Sethuraman Dinesh Dhanabalan2,Marimuthu Pitchaimuthu3,Mohammed S. Hashim4ORCID,Subramaniam Sangeetha5ORCID,Regula Thirupathi6ORCID

Affiliation:

1. Veltech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, India

2. Arifa Institute of Technology, India

3. Arifa Polytechnic College, India

4. National Institute of Advanced Studies, Bangalore, India

5. Kongunadu College of Engineering and Technology, India

6. College of Computing and Information Sciences, University of Technology and Applied Sciences, Muscat, Oman

Abstract

Climate change modeling is a critical endeavor in understanding and mitigating the impacts of environmental shifts. This research introduces a novelist methodology named ClimateNet, leveraging machine learning on creation virtual counterparts (digital twin) for enhanced climate change modeling. The primary objective is to augment traditional models with dynamic, data-driven simulations, offering a more nuanced understanding of climate variables and their interactions. By utilizing extensive real time datasets and advanced algorithms, ClimateNet generates virtual counterparts that not only simulate real-world conditions but also adapt to emerging patterns. The proposed system findings reveal a substantial improvement in the accuracy and predictive capabilities of climate models when integrated with ClimateNet.

Publisher

IGI Global

Reference17 articles.

1. An explainable deep learning approach for oral cancer detection;P.Ashok Babu;Journal of Electrical Engineering & Technology,2023

2. Impacts of climate change on fisheries and aquaculture. United Nations’;M.Barange;Food and Agriculture Organization,2018

3. Modulators of mercury risk to wildlife and humans in the context of rapid global change

4. Agricultural impacts of sustainable water use in the United States

5. Forage grass growth under future climate change scenarios affects fermentation and ruminant efficiency

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3