A Deep Q-Learning Network for Dynamic Constraint-Satisfied Service Composition

Author:

Yu Xuezhi1ORCID,Ye Chunyang1ORCID,Li Bingzhuo1ORCID,Zhou Hui1,Huang Mengxing1

Affiliation:

1. Hainan University, Haikou, China

Abstract

Traditional service composition methods usually address the constraint-satisfied service composition (CSSC) problem with static web services. Such solutions however are inapplicable to the dynamic scenarios where the services or their QoS values may change over time. Some recent studies are proposed to use reinforcement learning, especially, integrate the idea of Q-learning, to solve the dynamic CSSC problem. However, such Q-learning algorithm relies on Q-table to search for optimal candidate services. When the problem of CSSC becomes complex, the number of states in Q-table is very large and the cost of the Q-learning model will become extremely high. In this paper, the authors propose a novel solution to address this issue. By training a DQN network to replace the Q-table, this solution can effectively model the uncertainty of services with fine-grained QoS attributes and choose suitable candidate services to compose on the fly in the dynamic scenarios. Experimental results on both artificial and real datasets demonstrate the effectiveness of the method.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3