Author:
Chu Weijie,Chen Yun,Xiang YiFeng,Mo Tong,Li Weiping
Publisher
Springer Nature Singapore
Reference11 articles.
1. Zhang, Y., Cui, G., Deng, S., Chen, F., Wang, Y., He, Q.: Efficient query of quality correlation for service composition. IEEE Trans. Serv. Comput. 14(3), 695–709 (2021). https://doi.org/10.1109/TSC.2018.2830773
2. Chu, W., Wang, Y., Mo, T., Li, W.: A constraint satisfaction service composition method supporting one to many task pattern. In: 2021 IEEE International Conference on Services Computing (SCC), Chicago, IL, USA, pp. 382–387 (2021). https://doi.org/10.1109/SCC53864.2021.00054
3. Ren, L., Wang, W., Xu, H.: A reinforcement learning method for constraint-satisfied services composition. IEEE Trans. Serv. Comput. 13(5), 786–800 (2020). https://doi.org/10.1109/TSC.2017.2727050
4. Yu, X., Ye, C., Li, B., Zhou, H., Huang, M.: A deep Q-learning network for dynamic constraint-satisfied service composition. Int. J. Web Serv. Res. (IJWSR) 17, 55–75 (2020)
5. Chenghua, L., Jisong, K.: Multi-attribute decision making and adaptive genetic algorithm for solving QoS optimization of web service composition. Comput. Sci. 46(02), 187–195 (2019)