Semi-Supervised Sentiment Classification on E-Commerce Reviews Using Tripartite Graph and Clustering

Author:

Lu Xin1,Gu Donghong1,Zhang Haolan2,Song Zhengxin1,Cai Qianhua1,Zhao Hongya3,Wu Haiming1

Affiliation:

1. School of Electronics and Information Engineering, South China Normal University, China

2. Ningbo Institute of Technology, Zhejiang University, China

3. Shenzhen Polytechnic, China

Abstract

Sentiment classification constitutes an important topic in the field of Natural Language Processing, whose main purpose is to extract the sentiment polarity from unstructured texts. The label propagation algorithm, as a semi-supervised learning method, has been widely used in sentiment classification due to its describing sample relation in a graph-based pattern. Whereas, current graph developing strategies fail to use the global distribution and cannot handle the issues of polysemy and synonymy properly. In this paper, a semi-supervised learning methodology, integrating the tripartite graph and the clustering, is proposed for graph construction. Experiments on E-commerce reviews demonstrate the proposed method outperform baseline methods on the whole, which enables precise sentiment classification with few labeled samples.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Reference46 articles.

1. Semi-supervised clustering by seeding.;S.Basu;Proceedings of 19th International Conference on Machine Learning,2002

2. Comment based Seller Trust model for E-commerce

3. Combining labeled and unlabeled data with co-training

4. Semi-Supervised Learning

5. Dong, Z., & Dong, Q. (1999). Hownet: Word sets for sentiment analysis (beta). http://www.keenage.com

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3