Intelligent Prediction of Customer Churn with a Fused Attentional Deep Learning Model

Author:

Liu Yunjie,Shengdong MuORCID,Jijian Gu,Nedjah NadiaORCID

Abstract

In recent years, churn rates in industries such as finance have increased, and the cost of acquiring new users is more than five times the cost of retaining existing users. To improve the intelligent prediction accuracy of customer churn rate, artificial intelligence is gradually used. In this paper, the bidirectional long short-term memory convolutional neural network (BiLSTM-CNN) model is integrated with recurrent neural networks (RNNs) and convolutional neural networks (CNNs) in parallel, which well solves the defective problem that RNNs and CNNs run separately, and it also solves the problem that the output results of a long short-term memory network (LSTM) layer in a densely-connected LSTM-CNN (DLCNN) model will ignore some local information when input to the convolutional layer. In order to explore whether the attention bidirectional long short-term memory convolutional neural network (AttnBLSTM-CNN) model can perform better than BiLSTM-CNN, this paper uses bank data to compare the two models. The experimental results show that the accuracy of the AttnBiLSTM-CNN model is improved by 0.2%, the churn rate is improved by 1.3%, the F1 value is improved by 0.0102, and the AUC value is improved by 0.0103 compared with the BLSTM model. Therefore, introducing the attention mechanism into the BiLSTM-CNN model can further improve the performance of the model. The improvement of the accuracy of the user churn prediction model can warn of the possibility of user churn in advance and take effective measures in advance to prevent user churn and improve the core competitiveness of financial institutions.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3