Application of Data Fusion for Uncertainty and Sensitivity Analysis of Water Quality in the Shenandoah River

Author:

Mbuh Mbongowo Joseph1

Affiliation:

1. University of North Dakota, Grand Forks, USA

Abstract

This article is aimed at demonstrating the feasibility of combining water quality observations with modeling using data fusion techniques for efficient nutrients monitoring in the Shenandoah River (SR). It explores the hypothesis; “Sensitivity and uncertainty from water quality modeling and field observation can be improved through data fusion for a better prediction of water quality.” It models water quality using water quality simulation programs and combines the results with field observation, using a Kalman filter (KF). The results show that the analysis can be improved by using more observations in watersheds where minor variations to the analysis result in large differences in the subsequent forecast. Analyses also show that while data fusion was an invaluable tool to reduce uncertainty, an improvement in the temporal scales would also enhance results and reduce uncertainty. To examine how changes in the field observation affects the final KF analysis, the fusion and lab analysis cross-validation showed some improvement in the results with a very high coefficient of determination.

Publisher

IGI Global

Subject

Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3