Forecasting Solar Radiation

Author:

Chaudhary Pankaj1,Gattu Rohith2,Ezekiel Soundarajan2,Rodger James Allen3

Affiliation:

1. North Carolina A&T State University, USA

2. Indiana University of Pennsylvania, USA

3. Slippery Rock University of Pennsylvania, USA

Abstract

Renewable energy, such as solar and wind, has been increasing in popularity for over a decade. This is especially true in rural, underdeveloped areas, and urban households that desire energy independence. Renewable energy sources, such as solar, provide enhanced environmental benefits while simultaneously minimizing the carbon footprint. One popular technology that can capture solar energy is solar panels. The demand for solar panels has been on the rise due to increases in energy conversion efficiency, long-term financial advantages, and contributions to decreasing fossil fuel usage. However, solar panels need a steady supply of sunlight. This can be challenging in many situations, geographies, and environments. This paper uses multiple machine learning (ML) algorithms that can predict future values of solar radiation based on previously observed values and other environmental features measured without the use of complex equipment with methods that are computationally efficient so that forecasting can be done on consumer premises.

Publisher

IGI Global

Subject

Information Systems and Management,Strategy and Management,Computer Science Applications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Solar Irradiation Prediction using Machine Learning Models;2024 6th International Conference on Energy, Power and Environment (ICEPE);2024-06-20

2. An Intelligent Framework for Log Anomaly Detection Based on Log Template Extraction;Journal of Cases on Information Technology;2023-09-12

3. Perfect and broadband slotted Zr thin film solar absorber backed by Ti layer for visible and infrared spectrum;Optical and Quantum Electronics;2023-06-10

4. A systematic review of technological advancements in signal sensing, actuation, control and training methods in robotic exoskeletons for rehabilitation;Industrial Robot: the international journal of robotics research and application;2022-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3