An Intelligent Framework for Log Anomaly Detection Based on Log Template Extraction

Author:

Pan Lei1,Zhu Huichang2

Affiliation:

1. Nanjing Institute of Technology, China

2. Jiangsu Huasheng Information Technology Co., Ltd., China

Abstract

Log anomaly detection holds great significance in computer systems and network security. A large amount of log data is generated in the background of various information systems and equipment, so automated methods are required to identify abnormal behavior that may indicate security threats or system malfunctions. The traditional anomaly detection methods usually rely on manual statistical discovery, or match by regular expression which are complex and time-consuming. To prevent system failures, minimize troubleshooting time, and reduce service interruptions, a log template-based anomaly detection method has been proposed in this context. This approach leverages log template extraction, log clustering, and classification technology to timely detect abnormal events within the information system. The effectiveness of this method has been thoroughly tested and compared against traditional log anomaly detection systems. The results demonstrate improvements in log analysis depth, event recognition accuracy, and overall efficiency.

Publisher

IGI Global

Subject

Information Systems and Management,Strategy and Management,Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3