Industrial big data is the key to realize the vision of smart factories. This research aims to identify and explore potential barriers that prevent organizations from deploying industrial big data solutions in the development of smart factories through a socio-technical perspective. The research follows an inductive qualitative approach. Twenty-seven semi-structured interviews were conducted with the CEO, smart factory manager, IT managers, departmental heads, and IS consultants in the selected case company. The interview data were analyzed using a thematic analysis method. Derived from a thematic analysis, six sets of barriers including technical, data, technical support, organization, individual, and social issues were identified, as well as the relationships between them. An empirical framework was developed to highlight the relationship between these barriers. This study contributes to the knowledge of industrial big data in general and provides constructive insight into industrial big data implementation in smart factory development particularly.