Hybrid Model for Named Entity Recognition
Author:
Affiliation:
1. Shri Vaishnav Vidyapeeth Vishwavidyalaya, India
Abstract
Named entity recognition is an important factor that has a direct and significant impact on the quality of neural sequence labelling. It entails choosing encoding input data to create grammatical and semantic representation vectors. The main goal of this research is to provide a hybrid neural network model for a specific sequence labelling task such as named entity recognition. Three subnetworks are used in this hybrid model to ensure that information at the character, capitalization levels, and word-level contextual representation is fully utilized. The authors used different samples for training and development sets on the CoNLL-2003 dataset to show that the model could compare its performance to that of other state-of-the-art models.
Publisher
IGI Global
Subject
Materials Chemistry,Economics and Econometrics,Media Technology,Forestry
Reference25 articles.
1. An Improved Word Representation for Deep Learning Based NER in Indian Languages
2. Robustness to Capitalization Errors in Named Entity Recognition
3. GRN: Gated Relation Network to Enhance Convolutional Neural Network for Named Entity Recognition
4. Named Entity Recognition with Bidirectional LSTM-CNNs
5. A Hidden Markov Model Based Named Entity Recognition System: Bengali and Hindi as Case Studies
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3