GRN: Gated Relation Network to Enhance Convolutional Neural Network for Named Entity Recognition

Author:

Chen Hui,Lin Zijia,Ding Guiguang,Lou Jianguang,Zhang Yusen,Karlsson Borje

Abstract

The dominant approaches for named entity recognitionm (NER) mostly adopt complex recurrent neural networks (RNN), e.g., long-short-term-memory (LSTM). However, RNNs are limited by their recurrent nature in terms of computational efficiency. In contrast, convolutional neural networks (CNN) can fully exploit the GPU parallelism with their feedforward architectures. However, little attention has been paid to performing NER with CNNs, mainly owing to their difficulties in capturing the long-term context information in a sequence. In this paper, we propose a simple but effective CNN-based network for NER, i.e., gated relation network (GRN), which is more capable than common CNNs in capturing long-term context. Specifically, in GRN we firstly employ CNNs to explore the local context features of each word. Then we model the relations between words and use them as gates to fuse local context features into global ones for predicting labels. Without using recurrent layers that process a sentence in a sequential manner, our GRN allows computations to be performed in parallel across the entire sentence. Experiments on two benchmark NER datasets (i.e., CoNLL2003 and Ontonotes 5.0) show that, our proposed GRN can achieve state-of-the-art performance with or without external knowledge. It also enjoys lower time costs to train and test.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BLINKtextsubscriptLSTM: BioLinkBERT and LSTM based approach for extraction of PICO frame from Clinical Trial Text;Proceedings of the 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD CODS and 29th COMAD);2024-01-04

2. Chinese Medical Named Entity Recognition Based on Pre-training Model;Lecture Notes in Computer Science;2024

3. A Framework for Automated Generation of Transmission Processes Based on Kinetic Knowledge Mapping;Communications in Computer and Information Science;2024

4. Integrating Structural Priors into Transformer for Named Entity Recognition;2023 IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC);2023-12-08

5. GPBP: Pipeline Extraction of Entities and Relations for Construction of Urban Utility Tunnel Knowledge Graph;2023 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS);2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3