Multi-Objective Big Data View Materialization Using NSGA-II

Author:

Kumar Akshay1,Vijay Kumar T. V.1

Affiliation:

1. Jawaharlal Nehru University, India

Abstract

Big data views, in the context of distributed file system (DFS), are defined over structured, semi-structured and unstructured data that are voluminous in nature with the purpose to reduce the response time of queries over Big data. As the size of semi-structured and unstructured data in Big data is very large compared to structured data, a framework based on query attributes on Big data can be used to identify Big data views. Materializing Big data views can enhance the query response time and facilitate efficient distribution of data over the DFS based application. Given all the Big data views cannot be materialized, therefore, a subset of Big data views should be selected for materialization. The purpose of view selection for materialization is to improve query response time subject to resource constraints. The Big data view materialization problem was defined as a bi-objective problem with the two objectives- minimization of query evaluation cost and minimization of the update processing cost, with a constraint on the total size of the materialized views. This problem is addressed in this paper using multi-objective genetic algorithm NSGA-II. The experimental results show that proposed NSGA-II based Big data view selection algorithm is able to select reasonably good quality views for materialization.

Publisher

IGI Global

Subject

Library and Information Sciences,Strategy and Management,Business and International Management

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Big data and innovative organizational performance: Evidence from a moderated‐mediated model;Creativity and Innovation Management;2022-10-07

2. Multi-Objective Big Data View Materialization Using NSGA-III;International Journal of Decision Support System Technology;2022-10-06

3. Selection of Candidate Views for Big Data View Materialization;Lecture Notes in Electrical Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3