Multi-Objective Big Data View Materialization Using NSGA-III

Author:

Kumar Akshay1,Kumar T. V. Vijay1

Affiliation:

1. Jawaharlal Nehru University, India

Abstract

Present day applications process large amount of data that is being produced at brisk rate and is heterogeneous with levels of trustworthiness. This Big data largely consists of semi-structured and unstructured data, which needs to be processed in admissible time so that timely decisions are taken that benefit the organization and society. Such real time processing would require Big data view materialization that would enable faster and timely processing of decision making queries. Several algorithms exist for Big data view materialization. These algorithms aim to select Big data views that minimize the total query processing cost for the query workload. In literature, this problem has been articulated as a bi-objective optimization problem, which minimizes the query evaluation cost along with the update processing cost. This paper proposes to adapt the reference point based non-dominated sorting genetic algorithm, to design an NSGA-III based Big data view selection algorithm (BDVSANSGA-III) to address this bi-objective Big data view selection problem. Experimental results revealed that the proposed BDVSANSGA-III was able to compute diverse non-dominated Big data views and performed better than the existing algorithms..

Publisher

IGI Global

Subject

Modeling and Simulation,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3