The Effect of Stemming on Arabic Text Classification

Author:

Wahbeh Abdullah1,Al-Kabi Mohammed2,Al-Radaideh Qasem2,Al-Shawakfa Emad2,Alsmadi Izzat2

Affiliation:

1. Dakota State University, USA

2. Yarmouk University, Jordan

Abstract

The information world is rich of documents in different formats or applications, such as databases, digital libraries, and the Web. Text classification is used for aiding search functionality offered by search engines and information retrieval systems to deal with the large number of documents on the web. Many research papers, conducted within the field of text classification, were applied to English, Dutch, Chinese, and other languages, whereas fewer were applied to Arabic language. This paper addresses the issue of automatic classification or classification of Arabic text documents. It applies text classification to Arabic language text documents using stemming as part of the preprocessing steps. Results have showed that applying text classification without using stemming; the support vector machine (SVM) classifier has achieved the highest classification accuracy using the two test modes with 87.79% and 88.54%. On the other hand, stemming has negatively affected the accuracy, where the SVM accuracy using the two test modes dropped down to 84.49% and 86.35%.

Publisher

IGI Global

Reference59 articles.

1. Abbasi, A., & Chen, H. (2005). Applying authorship analysis to Arabic Web content. In P. Kantor, G. Muresan, F. Roberts, D. D. Zeng, F.-Y. Wang, H. Chen, & R. C. Merkle (Eds.), Proceedings of the IEEE International Conference on Intelligence and Security Informatics, Atlanta, GA (LNCS 3495, pp. 75-93).

2. Al-Harbi, S., Almuhareb, A., Al-Thubaity, A., Khorsheed, S., & Al-Rajeh, A. (2008). Automatic Arabic text classification. In Proceedings of the 9th International Conference on Statistical Analysis of Textual Data (pp. 77-83).

3. Al-Kabi, M., & Al-Mustafa, R. (2006). Arabic root based stemmer. In Proceedings of the International Arab Conference on Information Technology, Jordan.

4. Benchmarking and assessing the performance of Arabic stemmers

5. Al-Radaideh, Q. (2008). The impact of classification evaluation methods on rough sets based classifiers. In Proceedings of the International Arab Conference on Information Technology, Sfax, Tunisia.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Big Data Framework Classification for Public E-Governance Using Machine Learning Techniques;Basrah Researches Sciences;2022-12-30

2. A Comparative Analysis of Classificaton methods for Diagnosis of Lower Back Pain;Oriental journal of computer science and technology;2018-06-07

3. The Effect of Preprocessing on Arabic Document Categorization;Algorithms;2016-04-18

4. Automatic Spoken Customer Query Identification for Arabic Language;Proceedings of the 2016 8th International Conference on Information Management and Engineering - ICIME 2016;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3