A Comparative Analysis of Classificaton methods for Diagnosis of Lower Back Pain

Author:

Bhatt Mittal1,Dahiya Vishal2,Singh Arvind K.3

Affiliation:

1. ITM Universe, Affiliated to Gujarat Technological University, Vadodara, India.

2. Indus University, Ahmedabad, India.

3. Space Application Centre, ISRO, Ahmedabad, India.

Abstract

In this paper different classification methods are compared using base and meta(Combination of Multiple Classifier for training) level classifiers, for the fruitful diagnosis of Lower Back Pain. The Lower Back Pain becomes chronic with age, so needs to be correctly diagnose with symptoms in the early age. Five independent classifiers were implemented at base level and meta level. At meta level, five combinations of different classifiers were implemented, using voting technique. According to the scores, the overall classification using Naïve Bayes and Multilayer Perceptron got the maximum efficiency 83.87%. The purpose of this paper is to diagnose healthy individuals efficiently. To carry out study the Lower Back Pain Symptoms Dataset is used from very famous platform for predictive modeling, Kaggle. The experiments were carried out in WEKA (Waikato Environment for Knowledge Analysis), suite of machine learning software1.

Publisher

Oriental Scientific Publishing Company

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference11 articles.

1. Weka, Machine Learning Group at University of Wekato, http://www.cs.waikato.ac.nz.

2. Hongjun Lu, Hongyan Liu, Decision Tables: Scalable classification exploring RDBMS capabilities. 2000;373-384.

3. Peter O. Sullivan, Diagnosis and classification of chronic lower back pain disorders: Maladaptive movements and motor control impairments as underlying mechanism, Manual Therapy, Elsevier. 2005;242-255.

4. Xin Xia, Dalid Lo, Xinyuwang, Xiaohu Yang, shanping Li, A Comparative study of supervised learning algorithms for re-opened bug prediction, IEEE. 2013;331-334.

5. T. Sathya Devi, Dr. K. Meenakshi Sundaram, A comparative analysis of meta and tree classification algorithms using WEKA, International Research Journal of Engineering and Technology(IRJET). 2016;3:(11).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3