Exploiting Social Media Features for Automated Tag Recommendation

Author:

Abbasi Rabeeh Ayaz1

Affiliation:

1. Quaid-i-Azam University, Pakistan

Abstract

In today’s social media platforms, when users upload or share their media (photos, videos, bookmarks, etc.), they often annotate it with keywords (called tags). Annotating the media helps in retrieving and browsing resources, and also allows the users to search and browse annotated media. In many social media platforms like Flickr or YouTube, users have to manually annotate their resources, which is inconvenient and time consuming. Tag recommendation is the process of suggesting relevant tags for a given resource, and a tag recommender is a system that recommends the tags. A tag recommender system is important for social media platforms to help users in annotating their resources. Many of the existing tag recommendation methods exploit only the tagging information (Jaschke et al., 2007, Marinho & Schmidt-Thieme, 2008, Sigurbjornsson & van Zwol, 2008). However, many social media platforms support other media features like geographical coordinates. These features can be exploited for improving tag recommendation. In this chapter, a comparison of three types of social media features for tag recommendation is presented and evaluated. The features presented in this chapter include geographical-coordinates, low-level image descriptors, and tags.

Publisher

IGI Global

Reference29 articles.

1. Abbasi, R., Grzegorzek, M., & Staab, S. (2009). Large scale tag recommendation using different image representations. In T. S. Chua, Y. Kompatsiaris, B. Mérialdo, W. Haas, G. Thallinger, & W. Bailer (Eds.), Proceedings of 4th International Conference on Semantic and Digital Media Technologies, Semantic Multimedia, Lecture Notes in Computer Science 5887, (pp. 65-76). Berlin, Germany: Springer.

2. Adrian, B., Sauermann, L., & Roth-Berghofer, T. (2007). ConTag: A semantic tag recommendation system. In T. Pellegrini & S. Schaffert (Eds.), Proceedings of I-Semantics, (pp. 297-304). JUCS.

3. Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., & Rabitti, F. (2009). CoPhIR: A test collection for content-based image retrieval. CoRR, abs/0905.4627v2.

4. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Proceedings of the Seventh International World Wide Web Conference Computer Networks and ISDN Systems, 30(1-7), 107-117.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3