MFS-LDA: a multi-feature space tag recommendation model for cold start problem

Author:

Masood Muhammad Ali,Abbasi Rabeeh Ayaz,Maqbool Onaiza,Mushtaq Mubashar,Aljohani Naif R.,Daud Ali,Aslam Muhammad Ahtisham,Alowibdi Jalal S.

Abstract

Purpose Tags are used to annotate resources on social media platforms. Most tag recommendation methods use popular tags, but in the case of new resources that are as yet untagged (the cold start problem), popularity-based tag recommendation methods fail to work. The purpose of this paper is to propose a novel model for tag recommendation called multi-feature space latent Dirichlet allocation (MFS-LDA) for cold start problem. Design/methodology/approach MFS-LDA is a novel latent Dirichlet allocation (LDA)-based model which exploits multiple feature spaces (title, contents, and tags) for recommending tags. Exploiting multiple feature spaces allows MFS-LDA to recommend tags even if data from a feature space is missing (the cold start problem). Findings Evaluation of a publicly available data set consisting of around 20,000 Wikipedia articles that are tagged on a social bookmarking website shows a significant improvement over existing LDA-based tag recommendation methods. Originality/value The originality of MFS-LDA lies in segregation of features for removing bias toward dominant features and in synchronization of multiple feature space for tag recommendation.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approaches and algorithms to mitigate cold start problems in recommender systems: a systematic literature review;Journal of Intelligent Information Systems;2022-04-23

2. Time-aware Service Recommendation Based on Dynamic Preference and QoS;2020 IEEE International Conference on Web Services (ICWS);2020-10

3. Hierarchical attention model for personalized tag recommendation;Journal of the Association for Information Science and Technology;2020-08-23

4. Tag Recommendation for Short Arabic Text by Using Latent Semantic Analysis of Wikipedia;Jordanian Journal of Computers and Information Technology;2020

5. Exploiting syntactic and neighbourhood attributes to address cold start in tag recommendation;Information Processing & Management;2019-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3