Synchronizing Execution of Big Data in Distributed and Parallelized Environments

Author:

Jung Gueyoung1,Mukherjee Tridib2

Affiliation:

1. Xerox Research Center Webster, USA

2. Xerox Research Center India, India

Abstract

In the modern information era, the amount of data has exploded. Current trends further indicate exponential growth of data in the future. This prevalent humungous amount of data—referred to as big data—has given rise to the problem of finding the “needle in the haystack” (i.e., extracting meaningful information from big data). Many researchers and practitioners are focusing on big data analytics to address the problem. One of the major issues in this regard is the computation requirement of big data analytics. In recent years, the proliferation of many loosely coupled distributed computing infrastructures (e.g., modern public, private, and hybrid clouds, high performance computing clusters, and grids) have enabled high computing capability to be offered for large-scale computation. This has allowed the execution of the big data analytics to gather pace in recent years across organizations and enterprises. However, even with the high computing capability, it is a big challenge to efficiently extract valuable information from vast astronomical data. Hence, we require unforeseen scalability of performance to deal with the execution of big data analytics. A big question in this regard is how to maximally leverage the high computing capabilities from the aforementioned loosely coupled distributed infrastructure to ensure fast and accurate execution of big data analytics. In this regard, this chapter focuses on synchronous parallelization of big data analytics over a distributed system environment to optimize performance.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3