Affiliation:
1. Raiffeisenbank Austria d.d., Croatia
2. Minot State University, USA
Abstract
This chapter proposes a new analytical approach that consolidates the traditional analytical approach for solving problems such as churn detection, fraud detection, building predictive models, segmentation modeling with data sources, and analytical techniques from the big data area. Presented are solutions offering a structured approach for the integration of different concepts into one, which helps analysts as well as managers to use potentials from different areas in a systematic way. By using this concept, companies have the opportunity to introduce big data potential in everyday data mining projects. As is visible from the chapter, neglecting big data potentials results often with incomplete analytical results, which imply incomplete information for business decisions and can imply bad business decisions. The chapter also provides suggestions on how to recognize useful data sources from the big data area and how to analyze them along with traditional data sources for achieving more qualitative information for business decisions.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献