Proposal of Analytical Model for Business Problems Solving in Big Data Environment

Author:

Klepac Goran1,Berg Kristi L.2

Affiliation:

1. Raiffeisenbank Austria d.d., Croatia

2. Minot State University, USA

Abstract

This chapter proposes a new analytical approach that consolidates the traditional analytical approach for solving problems such as churn detection, fraud detection, building predictive models, segmentation modeling with data sources, and analytical techniques from the big data area. Presented are solutions offering a structured approach for the integration of different concepts into one, which helps analysts as well as managers to use potentials from different areas in a systematic way. By using this concept, companies have the opportunity to introduce big data potential in everyday data mining projects. As is visible from the chapter, neglecting big data potentials results often with incomplete analytical results, which imply incomplete information for business decisions and can imply bad business decisions. The chapter also provides suggestions on how to recognize useful data sources from the big data area and how to analyze them along with traditional data sources for achieving more qualitative information for business decisions.

Publisher

IGI Global

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian Networks and Evolutionary Algorithms as a Tool for Portfolio Simulation and Optimization;Metaheuristic Approaches to Portfolio Optimization;2019

2. Finding Optimal Input Values for Desired Target Output by Using Particle Swarm Optimization Algorithm Within Probabilistic Models;Incorporating Nature-Inspired Paradigms in Computational Applications;2018

3. Big Data Management;International Journal of Organizational and Collective Intelligence;2017-07

4. Text Mining;Advances in Data Mining and Database Management;2017

5. Integration of Different Analytical Concepts on Multimedia Contents in Service of Intelligent Knowledge Extraction;Intelligent Analysis of Multimedia Information;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3