Technologies for Big Data

Author:

Bakshi Kapil1

Affiliation:

1. Cisco Systems Inc., USA

Abstract

This chapter provides a review and analysis of several key Big Data technologies. Currently, there are many Big Data technologies in development and implementation; hence, a comprehensive review of all of these technologies is beyond the scope of this chapter. This chapter focuses on the most popularly accepted technologies. The key Big Data technologies to be discussed include: Map-Reduce, NOSQL technology, MPP (Massively Parallel Processing), and In Memory Databases technologies. For each of these Big Data technologies, the following subtopics are discussed: the history and genesis of the Big Data technologies, problem set that this technology solves for Big Data analytics, the details of the technologies, including components, technical architecture, and theory of operations. This is followed by technical operation and infrastructure (compute, storage, and network), design considerations, and performance benchmarks. Finally, this chapter provides an integrated approach to the above-mentioned Big Data technologies.

Publisher

IGI Global

Reference20 articles.

1. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., & Rasin, A. (2009). HadoopDB: An architectural hybrid of MapReduce and DBMS technologies for analytical workloads. In Proceedings of VLDB 2009. VLDB.

2. Barnett, T. (2011). Cisco visual networking index: The zettabyte era. Cisco Systems Inc. Retrieved August 2012 from http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/VNI_Hyperconnectivity_WP.html

3. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., & Burrows, M. … Gruber, R. (2006). Bigtable: A distributed storage system for structured data. In Proceeding of 7th Conference on Usenix Symposium on Operating System Design and Implementation, (vol. 7). Usenix. Retrieved from http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.9822

4. Cooper, B., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, S. (2010). Benchmarking cloud serving systems with YCSB. In Proceedings of the ACM Symposium on Cloud Computing. ACM. Retrieved January 2010 from http://research.yahoo.com/node/3202

5. Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified data processing of large clusters. OSDI. Retrieved from http://research.google.com/archive/mapreduce.html

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Business-making supported via the application of big data to achieve economic sustainability;Entrepreneurship and Sustainability Issues;2022-06-01

2. A Service-Oriented Foundation for Big Data;Research Anthology on Big Data Analytics, Architectures, and Applications;2022

3. Bayesian Networks and Evolutionary Algorithms as a Tool for Portfolio Simulation and Optimization;Metaheuristic Approaches to Portfolio Optimization;2019

4. Proposal of Analytical Model for Business Problems Solving in Big Data Environment;Web Services;2019

5. Big Data with Ten Big Characteristics;Proceedings of the 2nd International Conference on Big Data Research - ICBDR 2018;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3