Affiliation:
1. University of Quebec at Montreal, Canada & ESCA School of Management, Morocco
Abstract
Using the wavelet analysis for low-frequency time series extraction, the authors in this chapter conduct out-of-sample predictions of the S&P500 price index future trend (up and down) following two trading strategies. In particular, the goal is to separately predict an increase or decrease of stock market by 0.5%. Indeed, predicting market increases by 0.5% is suitable to active portfolio managers, whilst predicting its decreases by 0.5% is suitable to risk-averse portfolio managers to limit losses. The Support Vector Machine (SVM) with polynomial kernel is used as the baseline forecasting model. Its performance is respectively compared to that of the Probabilistic Neural Networks (PNN) and the well known k-Nearest Neighbour (k-NN) algorithm, which is a statistical classifier. The simulation results reveal that the predictive system based on the SVM with wavelet analysis coefficients as inputs outperforms all the other systems. The achieved accuracy is 98.13%. As a result, it is concluded that the wavelet transform and SVM as an integrated system are appropriate to capture the S&P500 price changes by more or less than 0.5%.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献