An Exploration of Backpropagation Numerical Algorithms in Modeling US Exchange Rates

Author:

Lahmiri Salim1

Affiliation:

1. ESCA School of Management, Morocco & University of Quebec at Montreal, Canada

Abstract

This chapter applies the Backpropagation Neural Network (BPNN) trained with different numerical algorithms and technical analysis indicators as inputs to forecast daily US/Canada, US/Euro, US/Japan, US/Korea, US/Swiss, and US/UK exchange rate future price. The training algorithms are the Fletcher-Reeves, Polak-Ribiére, Powell-Beale, quasi-Newton (Broyden-Fletcher-Goldfarb-Shanno, BFGS), and the Levenberg-Marquardt (LM). The standard Auto Regressive Moving Average (ARMA) process is adopted as a reference model for comparison. The performance of each BPNN and ARMA process is measured by computing the Mean Absolute Error (MAE), Mean Absolute Deviation (MAD), and Mean of Squared Errors (MSE). The simulation results reveal that the LM algorithm is the best performer and show strong evidence of the superiority of the BPNN over ARMA process. In sum, because of the simplicity and effectiveness of the approach, it could be implemented for real business application problems to predict US currency exchange rate future price.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3