Intelligent Fault Recognition and Diagnosis for Rotating Machines using Neural Networks

Author:

Ngolah Cyprian F.1,Morden Ed1,Wang Yingxu2

Affiliation:

1. Sentinel Trending & Diagnostics Ltd., Canada

2. University of Calgary, Canada

Abstract

Monitoring industrial machine health in real-time is not only in high demand, it is also complicated and difficult. Possible reasons for this include: (a) access to the machines on site is sometimes impracticable, and (b) the environment in which they operate is usually not human-friendly due to pollution, noise, hazardous wastes, etc. Despite theoretically sound findings on developing intelligent solutions for machine condition-based monitoring, few commercial tools exist in the market that can be readily used. This paper examines the development of an intelligent fault recognition and monitoring system (Melvin I), which detects and diagnoses rotating machine conditions according to changes in fault frequency indicators. The signals and data are remotely collected from designated sections of machines via data acquisition cards. They are processed by a signal processor to extract characteristic vibration signals of ten key performance indicators (KPIs). A 3-layer neural network is designed to recognize and classify faults based on a pre-determined set of KPIs. The system implemented in the laboratory and applied in the field can also incorporate new experiences into the knowledge base without overwriting previous training. Results show that Melvin I is a smart tool for both system vibration analysts and industrial machine operators.

Publisher

IGI Global

Reference17 articles.

1. Fault detection in induction motor using WPT and multiple SVM.;K. B.Aravindh;International Journal of Control and Automation,2010

2. Balakrishnan, K., & Honavar, V. (1995). Evolutionary design of neural architecture – A preliminary taxonomy and guide to literature (Tech. Rep. No. 95-01). Ames, IA: Artificial Intelligence Research Group, Iowa State University.

3. An ARTMAP neural network‐based machine condition monitoring system

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault Diagnosis of Rotating Machinery based on Domain Adversarial Training of Neural Networks;2021 IEEE 30th International Symposium on Industrial Electronics (ISIE);2021-06-20

2. An Improved Fault Diagnosis Method of Rotating Machinery Using Sensitive Features and RLS-BP Neural Network;IEEE Transactions on Instrumentation and Measurement;2020-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3