Author:
Knapp Gerald M.,Javadpour Roya,Wang Hsu‐Pin (Ben)
Abstract
Presents a real‐time neural network‐based condition monitoring system for rotating mechanical equipment. At its core is an ARTMAP neural network, which continually monitors machine vibration data, as it becomes available, in an effort to pinpoint new information about the machine condition. As new faults are encountered, the network weights can be automatically and incrementally adapted to incorporate information necessary to identify the fault in the future. Describes the design, operation, and performance of the diagnostic system. The system was able to identify the presence of fault conditions with 100 percent accuracy on both lab and industrial data after minimal training; the accuracy of the fault classification (when trained to recognize multiple faults) was greater than 90 percent.
Subject
Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献