Determination of Work Zone Capacity Using ELM, MPMR and GPR

Author:

Roy Sangeeta1,Jagan J.1,Samui Pijush2

Affiliation:

1. Vit University, India

2. National Institute of Technology Patna, India

Abstract

This article examines the capability of Extreme Learning Machine (ELM), Minimax Probability Machine Regression (MPMR) and Gaussian Process Regression (GPR) for determination of Work Zone Capacity. Number of lanes, number of open lanes, work zone layout, length, lane width, percentage trucks, grade, speed, work intensity, darkness factor, and proximity of ramps have been adopted as inputs of ELM, MPMR and GPR. ELM has excellent generalization performance, rapid training speed and little human intervention. MPMR is developed based on the concept of minimax probability machine classification. It does not assume any data distribution. GPR is a probabilistic, and non-parametric model. In GPR, different kinds of prior knowledge can be applied. This article describes a comparative study between the ELM, MPMR and GPR models.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3