An Efficient Method for Optimizing Segmentation Parameters

Author:

D'Avy Jacob1,Hsu Wei-Wen2,Chen Chung-Hao2,Koschan Andreas F.3,Abidi Mongi1

Affiliation:

1. University of Tennessee, USA

2. Old Dominion University, USA

3. The University of Tennessee, USA

Abstract

Segmenting an image into meaningful regions is an important step in many computer vision applications such as facial recognition, target tracking and medical image analysis. Because image segmentation is an ill-posed problem, parameters are needed to constrain the solution to one that is suitable for a given application. For a user, setting parameter values is often unintuitive. We present a method for automating segmentation parameter selection using an efficient search method to optimize a segmentation objective function. Efficiency is improved by utilizing prior knowledge about the relationship between a segmentation parameter and the objective function terms. An adaptive sampling of the search space is created which focuses on areas that are more likely to contain a minimum. When compared to parameter optimization approaches based on genetic algorithm, Tabu search, and multi-locus hill climbing the proposed method was able to achieve equivalent optimization results with an average of 25% fewer objective function evaluations.

Publisher

IGI Global

Reference38 articles.

1. Contour detection and hierarchical image segmentation. Pattern Analysis and Machine Intelligence;P.Arbelaez;IEEE Transactions on,2011

2. Quantitative evaluation of color image segmentation results

3. Chen, H.-C., & Wang, S.-J. (2006). Visible colour difference-based quantitative evaluation of colour segmentation. Vision, Image and Signal Processing, IEE Proceedings, 153, 598-609.

4. Medical image segmentation by combining graph cuts and oriented active appearance models. Image Processing;X.Chen;IEEE Transactions on,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New hybrid segmentation algorithm: UNet-GOA;PeerJ Computer Science;2023-08-08

2. Image Thresholding Based on Fuzzy Particle Swarm Optimization;Hybrid Metaheuristics for Image Analysis;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3