New hybrid segmentation algorithm: UNet-GOA

Author:

Yousefi Tohid,Aktaş Özlem

Abstract

The U-Net architecture is a prominent technique for image segmentation. However, a significant challenge in utilizing this algorithm is the selection of appropriate hyperparameters. In this study, we aimed to address this issue using an evolutionary approach. We conducted experiments on four different geometric datasets (triangle, kite, parallelogram, and square), with 1,000 training samples and 200 test samples. Initially, we performed image segmentation without the evolutionary approach, manually adjusting the U-Net hyperparameters. The average accuracy rates for the geometric images were 0.94463, 0.96289, 0.96962, and 0.93971, respectively. Subsequently, we proposed a hybrid version of the U-Net architecture, incorporating the Grasshopper Optimization Algorithm (GOA) for an evolutionary approach. This method automatically discovered the optimal hyperparameters, resulting in improved image segmentation performance. The average accuracy rates achieved by the proposed method were 0.99418, 0.99673, 0.99143, and 0.99946, respectively, for the geometric images. Comparative analysis revealed that the proposed UNet-GOA approach outperformed the traditional U-Net architecture, yielding higher accuracy rates.

Publisher

PeerJ

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3