Task Analysis and Motion Generation for Service Robots

Author:

Dai Jian S.1

Affiliation:

1. University of London, UK

Abstract

This chapter is to summarise research in the direction of domestic service robots particularly with reference to robotic implementation of ironing process. The chapter presents the garment handling and ironing from a procedural point of view and discusses the devices for handling. The handling is categorised into several steps with common handling operations, resulting in categorisation of gripping and handling devices with potential applications to domestic automation. Based on this, ironing paths are explored with an orientation-position representation. This is followed by the introduction of development of folding and unfolding and by the region segregation based garment folding. This involves path analysis, folding algorithms, and mechanisms review for ironing. The paths produced from the ironing process are presented with mathematical models to be possibly implemented in robotic automation and their orientation is presented, dependent on the regions of garment. The orientation analysis is useful in finding the similarity in motion to determine the effective and efficient way of ironing a garment with orientation region diagrams and workspace presentation.

Publisher

IGI Global

Reference47 articles.

1. Robotic origami folding

2. An XY‐Theta manipulator for flexible fabric part positioning

3. “Soft” grasping using a dextrous hand

4. Posture, workspace, and manipulability of the metamorphic multifingered hand with an articulated palm.;L.Cui;Transactions of the ASME: Journal of Mechanisms and Robotics,2011

5. Dai, J. S. (2002). Advances in robotic dexterous manipulation: Methodologies for synthesis. Paper presented at the 2002 IEEE International Conference on Intelligent Robots and Systems (IROS). Lausanne, Switzerland.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3