Design of a Power Aware Systolic Array based Support Vector Machine Classifier

Author:

Mandal Bhaswati1,Sarma Manash Pratim1,Sarma Kandarpa Kumar1ORCID

Affiliation:

1. Gauhati University, India

Abstract

This chapter presents a method for generating binary and multiclass Support Vector Machine (SVM) classifier with multiplierless kernel function. This design provides reduced power, area and reduced cost due to the use of multiplierless kernel operation. Binary SVM classifier classifies two groups of linearly or nonlinearly separable data while the multiclass classification provides classification of three nonlinearly separable data. Here, at first SVM classifier is trained for different classification problems and then the extracted training parameters are used in the testing phase of the same. The dataflow from all the processing elements (PEs) are parallely supported by systolic array. This systolic array architecture provides faster processing of the whole system design.

Publisher

IGI Global

Reference41 articles.

1. A digital architecture for support vector machines: theory, algorithm, and fpga implementation

2. Use of unidirectional data flow in bit-level systolic array chips

3. A reconfigurable parallel architecture for SVM classification.;I.Biasi;Proceedings of IEEE International Joint Conference on Neural Networks,2005

4. Burges, J. C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition.

5. Buzbee, B., Wang, W. & Wang, A. A. (n. d.). Power Saving Approaches and Trade-off for Storage Systems. Florida State University.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3