An Improved Particle Swarm Optimization for Optimal Power Flow

Author:

Vo Dieu Ngoc1ORCID,Schegner Peter2

Affiliation:

1. Ho Chi Minh City University of Technology, Vietnam

2. Institute of Electrical Power Systems and High Voltage Engineering & Dresden University of Technology, Germany

Abstract

This chapter proposes a newly improved particle swarm optimization (IPSO) method for solving optimal power flow (OPF) problem. The proposed IPSO is the particle swarm optimization with constriction factor and the particle’s velocity guided by a pseudo-gradient. The pseudo-gradient is to determine the direction for the particles so that they can quickly move to optimal solution. The proposed method has been tested on benchmark functions, the IEEE 14-bus, IEEE 30-bus, IEEE 57-bus, and IEEE-118 bus systems, in which the IEEE 30-bus system is tested with different objective functions including quadratic function, valve point effects, and multiple fuels. The test results have shown that the proposed method can efficiently obtain better total costs than the conventional PSO method. Therefore, the proposed IPSO could be a useful method for implementation in the OPF problem.

Publisher

IGI Global

Reference44 articles.

1. Optimal power flow using particle swarm optimization

2. Optimal Power Flow Using Tabu Search Algorithm

3. Optimal operation strategy for reactive power control modelling. Simulation and Control;A. A.Abou El-Ela;Part A,1992

4. Ackley, D. (1987). An empirical study of bit vector function optimization. Genetic Algorithms and Simulated Annealing, 170-215.

5. Handbook of Evolutionary Computation

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3