Enhancing Diversity in STEM Interdisciplinary Learning

Author:

Blake Reginald A.1,Liou-Mark Janet1

Affiliation:

1. New York City College of Technology, City University of New York, USA

Abstract

The Science, Technology, Engineering, and Mathematics (STEM) disciplines have traditionally been woefully unsuccessful in attracting, retaining, and graduating acceptable numbers of Underrepresented Minorities (URMs). A new paradigm of STEM practices is needed to address this vexing problem. This chapter highlights a novel interdisciplinary approach to STEM education. Instead of being siloed and mired in their respective STEM disciplines, students integrate real world, inquiry-based learning that is underpinned by a strong foundation in mathematics and a myriad of other pillars of STEM activities. These activities include Peer-Assisted Learning Workshops, Mentoring Programs, Undergraduate Research Experiences, STEM Exposure Trips, Conference Participation, and Peer Leadership. This strategy enhances STEM education among URMs by purposefully connecting and integrating knowledge and skills from across the STEM disciplines to solve real-world problems, by synthesizing and transferring knowledge across disciplinary boundaries, and by building critical thinking skills in a manner that is relevant to their experiences and yet transformative.

Publisher

IGI Global

Reference55 articles.

1. The “spend a summer with a scientist” (SaS) program at Rice University: A study of program outcomes and essential elements 1991-1997.;B.Alexander;Council on Undergraduate Research Quarterly,2000

2. American Competitiveness Initiative. (2006). Website. Retrieved from http://georgewbush-whitehouse.archives.gov/stateoftheunion/2006/aci

3. Arendale, D. R. (2004). Pathways of persistence: A review of postsecondary peer cooperative learning programs. In I. M. Duranczyk, J. L. Higbee, & D. B. Lundless (Eds.), Best Practices for Access and Retention in Higher Education. Retrieved from http://www.cehd.umn.edu/CRDEUL/pdf/monograph/5-a.pdf

4. Peer Mentoring in the General Chemistry and Organic Chemistry Laboratories. The Pinacol Rearrangement: An Exercise in NMR and IR Spectroscopy for General Chemistry and Organic Chemistry Laboratories

5. Arrison, T. (Ed.). (2009). Rising above the gathering storm two years later: Accelerating progress toward a brighter economic future: Summary of a convocation. Washington, DC: National Academies Press. Retrieved from http://www.nap.edu/catalog.php?record_id=12537

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3