(p+, α, t)-Anonymity Technique Against Privacy Attacks

Author:

Sowmyarani C. N. 1,Gadad Veena1,Dayananda P. 2

Affiliation:

1. R. V. College of Engineering, Bengaluru, India

2. JSS Academy of Technical Education, Bengaluru, India

Abstract

Privacy preservation is a major concern in current technology where enormous amounts of data are being collected and published for carrying out analysis. These data may contain sensitive information related to individual who owns them. If the data is published in their original form, they may lead to privacy disclosure which threats privacy requirements. Hence, the data should be anonymized before publishing so that it becomes challenging for intruders to obtain sensitive information by means of any privacy attack model. There are popular data anonymization techniques such as k-anonymity, l-diversity, p-sensitive k-anonymity, (l, m, d) anonymity, and t-closeness, which are vulnerable to different privacy attacks discussed in this paper. The proposed technique called (p+, α, t)-anonymity aims to anonymize the data in such a way that even though intruder has sufficient background knowledge on the target individual he will not be able to infer anything and breach private information. The anonymized data also provide sufficient data utility by allowing various data analytics to be performed.

Publisher

IGI Global

Subject

Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantic Tree Based PPDP Technique for Multiple Sensitive Attributes in Inter Cloud;SN Computer Science;2024-07-26

2. The Role of AI in EMR (Electronic Medical Record) and Patient Privacy Enhancement;Advances in Medical Diagnosis, Treatment, and Care;2024-06-30

3. A Comprehensive Review of Privacy Preserving Data Publishing (PPDP) Algorithms for Multiple Sensitive Attributes (MSA);Information Security and Privacy in Smart Devices;2023-03-31

4. A Behavioral Study of Advanced Security Attacks in Enterprise Networks;2021 IEEE International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS);2021-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3