Semantic Tree Based PPDP Technique for Multiple Sensitive Attributes in Inter Cloud

Author:

Gadad Veena,Sowmyarani C. N.,Dayananda P.ORCID

Abstract

AbstractDigital devices and information systems have made data privacy essential. The collected data contains sensitive attributes such as salary, marital status and health history that need to be protected. Such data is exchanged or published to a third party using cloud infrastructure to perform various analyses, conduct research, and make critical decisions. Unauthorized users of the published data may violate privacy, notwithstanding the benefits. Data anonymization is one of the technique for achieving data privacy. Existing techniques consider single sensitive attribute and data is anonymized using generalization or suppression approaches. On observation, it is found that these techniques are less efficient since the collected data contains multiple sensitive attributes when anonymized using the same approaches leads to higher information loss and residue records. In this paper, multiple sensitive attributes are considered and the dataset is anonymized by constructing a semantic hierarchical tree it is further partitioned using the anatomy approach. Later, the partitions are stored in interclouds to achieve better privacy protection. Experiments are conducted to observe and analyze the computational performance, residue records and diversity percentage. The results obtained prove that the proposed technique is efficient when compared to the existing ones.

Funder

Manipal Academy of Higher Education, Bangalore

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3