Deep Neural Models and Retrofitting for Arabic Text Categorization

Author:

El-Alami Fatima-Zahra1,El Alaoui Said Ouatik2,En-Nahnahi Noureddine1ORCID

Affiliation:

1. Laboratory of Informatics and Modeling, Sidi Mohamed Ben Abdellah University, Fez, Morocco

2. Ibn Tofail University, National School of Applied Sciences, Kenitra, Morocco

Abstract

Arabic text categorization is an important task in text mining particularly with the fast-increasing quantity of the Arabic online data. Deep neural network models have shown promising performance and indicated great data modeling capacities in managing large and substantial datasets. This article investigates convolution neural networks (CNNs), long short-term memory (LSTM) and their combination for Arabic text categorization. This work additionally handles the morphological variety of Arabic words by exploring the word embeddings model using position weights and subword information. To guarantee the nearest vector representations for connected words, this article adopts a strategy for refining Arabic vector space representations using semantic information embedded in lexical resources. Several experiments utilizing different architectures have been conducted on the OSAC dataset. The obtained results show the effectiveness of CNN-LSTM without and with retrofitting for Arabic text categorization in comparison with major competing methods.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Information Systems

Reference33 articles.

1. Arabic Text Classification Algorithm using TFIDF and Chi Square Measurements

2. Statistical Bayesian Learning for Automatic Arabic Text Categorization

3. Deep Learning Models for Sentiment Analysis in Arabic

4. Alami, H., En-Nahnahi, N., Zidani, K. A., & Ouatik, S. O. (2019). An Arabic question classification method based on new taxonomy and continuous distributed representation of words. Journal of King Saud University-Computer and Information Sciences.

5. A Combined CNN and LSTM Model for Arabic Sentiment Analysis

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3