A Deep Learning-based Classification Model for Arabic News Tweets Using Bidirectional Long Short-Term Memory Networks

Author:

Lin Chin-Teng,Thanoon Mohammed,Karali Sami

Abstract

This research develops a classification model for Arabic news tweets using Bidirectional Long Short-Term Memory networks (BiLSTM). Tweets about Arabic news were gathered between August 2016 and August 2020 and divided into five categories. Custom Python scripts, Twitter API and the GetOldTweets3 Python library were used to collect the data. BiLSTM was used to train and test the model. The results indicated an average accuracy, precision, recall, and f1-score of 0.88, 0.92, 0.88, and 0.89, respectively. The results could have practical implications for Arabic machine learning and NLP tasks in research and practice.

Publisher

Universiti Putra Malaysia

Reference56 articles.

1. Abdelaal, H. M., Elmahdy, A. N., Halawa, A. A., & Youness, H. A. (2018). Improve the automatic classification accuracy for Arabic tweets using ensemble methods. Journal of Electrical Systems and Information Technology, 5(3), 363-370. https://doi.org/10.1016/j.jesit.2018.03.001

2. Ahmed, W., Bath, P. A., & Demartini, G. (2017). Using Twitter as a data source: An overview of ethical, legal, and methodological challenges. In K. Woodfield (Ed.), The Ethics of Online Research (Advances in Research Ethics and Integrity, (Vol. 2, pp. 79-107). Emerald Publishing Limited. https://doi.org/10.1108/S2398-601820180000002004

3. Al Sbou, A. M., Hussein, A., Talal, B., & Rashid, R. A. (2018). A survey of Arabic text classification models. International Journal of Electrical and Computer Engineering, 8(6), 4352-4355. https://dx.doi.org/ 10.11591/ijece.v8i6.pp4352-4355

4. Alabbas, W., Al-Khateeb, H. M., & Mansour, A. (2016). Arabic text classification methods: Systematic literature review of primary studies. In 2016 4th IEEE International Colloquium on Information Science and Technology (CiSt) (pp. 361-367). IEEE Publishing. https://doi.org/10.1109/CIST.2016.7805072

5. Alayba, A. M., Palade, V., England, M., & Iqbal, R. (2018). A combined CNN and LSTM model for Arabic sentiment analysis. In A. Holzinger, P. Kieseberg, A. Tjoa, E. Weippl (Eds.), Machine Learning and Knowledge ExtractionCD-MAKE 2018, Lecture Notes in Computer Science (Vol 11015, pp. 179-191). Springer. https://doi.org/10.1007/978-3-319-99740-7_12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3