Adaptive Collaboration Based on the E-CARGO Model

Author:

Zhu Haibin1,Hou Ming2,Zhou Mengchu3

Affiliation:

1. Nipissing University, Canada

2. Defence Research & Development of Canada - Toronto, Canada

3. New Jersey Institute of Technology, USA

Abstract

Adaptive Collaboration (AC) is essential for maintaining optimal team performance on collaborative tasks. However, little research has discussed AC in multi-agent systems. This paper introduces AC within the context of solving real-world team performance problems using computer-based algorithms. Based on the authors’ previous work on the Environment-Class, Agent, Role, Group, and Object (E-CARGO) model, a theoretical foundation for AC using a simplified model of role-based collaboration (RBC) is proposed. Several parameters that affect team performance are defined and integrated into a theorem, which showed that dynamic role assignment yields better performance than static role assignment. The benefits of implementing AC are further proven by simulating a “future battlefield” of remotely-controlled robotic vehicles; in this scenario, team performance clearly benefits from shifting vehicles (or roles) using a single controller. Related research is also discussed for future studies.

Publisher

IGI Global

Subject

General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improve GMRACCF Qualifications via Collaborative Filtering in Vehicle Sales Chain;Tsinghua Science and Technology;2025-02

2. Continuous charging assignment algorithm for heterogeneous robot clusters based on E-CARGO;Expert Systems with Applications;2025-01

3. E-CARGO/RBC Research Guide: A Road Map for Researchers;IEEE Systems, Man, and Cybernetics Magazine;2024-07

4. Role Engine Implementation for a Continuous and Collaborative Multirobot System;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2024-02

5. Quasi Group Role Assignment With Agent Satisfaction in Self-Service Spatiotemporal Crowdsourcing;IEEE Transactions on Computational Social Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3