Privacy Preserving Distributed K-Means Clustering in Malicious Model Using Verifiable Secret Sharing Scheme

Author:

Patel Sankita1,Sonar Mitali2,Jinwala Devesh C.1

Affiliation:

1. Department of Computer Engineering, S V National Institute of Technology, Surat, Gujarat, India

2. Department of Computer Engineering, Shankersinh Vaghela Bapu Institute of Techonology, Gandhinagar, Gujarat, India

Abstract

In this article, the authors propose an approach for privacy preserving distributed clustering that assumes malicious model. In the literature, there do exist, numerous approaches that assume a semi honest model. However, such an assumption is, at best, reasonable in experimentations; rarely true in real world. Hence, it is essential to investigate approaches for privacy preservation using a malicious model. The authors use the Pederson's Verifiable Secret Sharing scheme ensuring the privacy using additively homomorphic secret sharing scheme. The trustworthiness of the data is assured using homomorphic commitments in Pederson's scheme. In addition, the authors propose two variants of the proposed approach - one for horizontally partitioned dataset and the other for vertically partitioned dataset. The experimental results show that the proposed approach is scalable in terms of dataset size. The authors also carry out experimentations to highlight the effectiveness of Verifiable Secret Sharing scheme against Zero Knowledge Proof scheme.

Publisher

IGI Global

Subject

Computer Networks and Communications,Hardware and Architecture

Reference39 articles.

1. Private collaborative forecasting and benchmarking

2. Private collaborative forecasting and benchmarking

3. Secure two-party k-means clustering

4. A zero-knowledge identification scheme based on the q-ary syndrome decoding problem.;P.-L.Cayrel;Proceedings of the 17th International Conference on Selected Areas in Cryptography (SAC'10),2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3