Multi-Party Verifiable Privacy-Preserving Federated k-Means Clustering in Outsourced Environment

Author:

Hou Ruiqi1,Tang Fei1ORCID,Liang Shikai2,Ling Guowei2

Affiliation:

1. School of Cyber Security and Information Law, Chongqing University of Posts and Telecommunications, Chongqing 400 065, China

2. College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400 065, China

Abstract

As a commonly used algorithm in data mining, clustering has been widely applied in many fields, such as machine learning, information retrieval, and pattern recognition. In reality, data to be analyzed are often distributed to multiple parties. Moreover, the rapidly increasing data volume puts heavy computing pressure on data owners. Thus, data owners tend to outsource their own data to cloud servers and obtain data analysis results for the federated data. However, the existing privacy-preserving outsourced k -means schemes cannot verify whether participants share consistent data. Considering the scenarios with multiple data owners and sensitive information security in an outsourced environment, we propose a verifiable privacy-preserving federated k -means clustering scheme. In this article, cloud servers and participants perform k -means clustering algorithm over encrypted data without exposing private data and intermediate results in each iteration. In particular, our scheme can verify the shares from participants when updating the cluster centers based on secret sharing, hash function and blockchain, so that our scheme can resist inconsistent share attacks by malicious participants. Finally, the security and experimental analysis are carried out to show that our scheme can protect private data and get high-accuracy clustering results.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference34 articles.

1. A survey on clustering in data mining;M. A. Dalal

2. A review of clustering techniques and developments

3. Some methods for classification and analysis of multivariate observations;J. Macqueen

4. RPPTD: Robust Privacy-Preserving Truth Discovery Scheme

5. PLVA: Privacy-Preserving and Lightweight V2I Authentication Protocol

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3