Outlier Detection Strategy Using the Self-Organizing Map

Author:

Hadzic Fedja1,Dillon Tharam S.2

Affiliation:

1. DEBII Institute, Curtin University of Technology, Australia

2. University of Technology Sydney, Australia

Abstract

Real world datasets are often accompanied with various types of anomalous or exceptional entries which are often referred to as outliers. Detecting outliers and distinguishing noise form true exceptions is important for effective data mining. This chapter presents two methods for outlier detection and analysis using the self-organizing map (SOM), where one is more suitable for categorical and the other for continuous data. They are generally based on filtering out the instances which are not captured by or are contradictory to the obtained concept hierarchy for the domain. We demonstrate how the dimension of the output space plays an important role in the kind of patterns that will be detected as outlying. Furthermore, the concept hierarchy itself provides extra criteria for distinguishing noise from true exceptions. The effectiveness of the proposed outlier detection and analysis strategy is demonstrated through the experiments on publicly available real world datasets.

Publisher

IGI Global

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying the limitations associated with machine learning techniques in performing accounting tasks;Journal of Financial Reporting and Accounting;2024-04-16

2. An efficient method for autoencoder based outlier detection;Expert Systems with Applications;2023-03

3. VSOM: Efficient, Stochastic Self-organizing Map Training;Advances in Intelligent Systems and Computing;2018-11-08

4. Self-Organizing Map Convergence;International Journal of Service Science, Management, Engineering, and Technology;2018-04

5. A Modern Approach to Total Wellbeing;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3