Identifying the limitations associated with machine learning techniques in performing accounting tasks

Author:

Smith Liezl,Lamprecht Christiaan

Abstract

Purpose In a virtual interconnected digital space, the metaverse encompasses various virtual environments where people can interact, including engaging in business activities. Machine learning (ML) is a strategic technology that enables digital transformation to the metaverse, and it is becoming a more prevalent driver of business performance and reporting on performance. However, ML has limitations, and using the technology in business processes, such as accounting, poses a technology governance failure risk. To address this risk, decision makers and those tasked to govern these technologies must understand where the technology fits into the business process and consider its limitations to enable a governed transition to the metaverse. Using selected accounting processes, this study aims to describe the limitations that ML techniques pose to ensure the quality of financial information. Design/methodology/approach A grounded theory literature review method, consisting of five iterative stages, was used to identify the accounting tasks that ML could perform in the respective accounting processes, describe the ML techniques that could be applied to each accounting task and identify the limitations associated with the individual techniques. Findings This study finds that limitations such as data availability and training time may impact the quality of the financial information and that ML techniques and their limitations must be clearly understood when developing and implementing technology governance measures. Originality/value The study contributes to the growing literature on enterprise information and technology management and governance. In this study, the authors integrated current ML knowledge into an accounting context. As accounting is a pervasive aspect of business, the insights from this study will benefit decision makers and those tasked to govern these technologies to understand how some processes are more likely to be affected by certain limitations and how this may impact the accounting objectives. It will also benefit those users hoping to exploit the advantages of ML in their accounting processes while understanding the specific technology limitations on an accounting task level.

Publisher

Emerald

Reference96 articles.

1. ABBYY Technologies (2017), “ABBYY FlexiCapture”, available at: www.abbyy.com/en-apac/flexicapture/features/ (accessed 2 August 2017).

2. A survey of anomaly detection techniques in financial domain;Future Generation Computer Systems,2016

3. Algorithmia (2020), “2020 State of enterprise machine learning”, available at: https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf%0Ahttps://algorithmia.com/state-of-ml (accessed 10 June 2022).

4. Assessment of data quality in accounting data with association rules;Expert Systems with Applications,2014

5. Critical success factors (CSFs) for information technology governance (ITG);International Journal of Information Management,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3