Affiliation:
1. Western Ecological Studies, USA
2. University of Alaska-Fairbanks, USA
Abstract
The use of machine-learning algorithms capable of rapidly completing intensive computations may be an answer to processing the sheer volumes of highly complex data available to researchers in the field of ecology. In spite of this, the continued use of less effective, simple linear, and highly labor intensive techniques such as stepwise multiple regression continue to be widespread in the ecological community. Herein we describe the use of data-mining algorithms such as TreeNet and Random Forests (Salford Systems), which can rapidly and accurately identify meaningful patterns and relationships in subsets of data that carry various degrees of outliers and uncertainty. We use satellite data from a wintering Golden Eagle as an example application; judged by the consistency of the results, the resultant models are robust, in spite of 30 % faulty presence data. The authors believe that the implications of these findings are potentially far-reaching and that linking computational software with wildlife ecology and conservation management in an interdisciplinary framework cannot only be a powerful tool, but is crucial toward obtaining sustainability.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献