Seasonal sonic patterns reveal phenological phases (sonophases) associated with climate change in subarctic Alaska

Author:

Mullet Timothy C.,Farina Almo,Morton John M.,Wilhelm Sara R.

Abstract

Given that ecosystems are composed of sounds created by geophysical events (e.g., wind, rain), animal behaviors (e.g., dawn songbird chorus), and human activities (e.g., tourism) that depend on seasonal climate conditions, the phenological patterns of a soundscape could be coupled with long-term weather station data as a complimentary ecological indicator of climate change. We tested whether the seasonality of the soundscape coincided with common weather variables used to monitor climate. We recorded ambient sounds hourly for five minutes (01 January–30 June) over three years (2019–2021) near a weather station in a subarctic ecosystem in south-central Alaska. We quantified sonic information using the Acoustic Complexity Index (ACItf), coupled with weather data, and used machine learning (TreeNet) to identify sonic-climate relationships. We grouped ACItf according to time periods of prominent seasonal events (e.g., days with temperatures >0°C, no snow cover, green up, dawn biophony, and road-based tourism) and identified distinct sonic phenophases (sonophases) for groups with non-overlapping 95% confidence intervals. In general, sonic activity increased dramatically as winter transitioned to spring and summer. We identified two winter sonophases, a spring sonophase, and a summer sonophase, each coinciding with hours of daylight, temperature, precipitation, snow cover, and the prevalence of animal and human activities. We discuss how sonophases and weather data combined serve as a multi-dimensional, systems-based approach to understanding the ecological effects of climate change in subarctic environments.

Publisher

Frontiers Media SA

Reference51 articles.

1. Implications of global climate change for snowmelt hydrology in the twenty-first century;Adam;Hydrol. Processes: Int. J.,2009

2. Potential effects of warming climate on visitor use in three Alaskan national parks;Albano;Park Sci.,2013

3. Acoustic indices as proxies for biodiversity: a meta-analysis;Alcocer;Biol. Rev.,2022

4. Implications of global climate change for tourism flows and seasonality;Amelung;J. Travel Res.,2007

5. The concept of essential climate variables in support of climate research, applications, and policy;Bojinski;Bull. Am. Meteorol. Soc.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3