Robots in Education

Author:

Ali Yousuf Muhammad1

Affiliation:

1. Tecnologico de Monterrey – Santa Fe Campus, Mexico

Abstract

The new paradigm in engineering education demands hands-on training of the students using technology oriented projects. The roots of this approach can be traced back to the work of Seymour Papert in 1970s when he built a programmable turtle with a reflective light sensor (Papert, 1971). His ideas ultimately lead to the educational theory of constructionism (Papert, 1986 and Harel & Papert, 1991). According to this theory, students learn very effectively when they are involved in the creation of an external object that lives in the real world. Learners use this object to think with, and to relate ideas of, their subject of inquiry (Bourgoin, 1990). From an educational point of view, the theory of Papert can be linked to the constructivist theory of Jean Piaget (Paiget, 1972). According to this theory, learning comes from an active process of knowledge construction. This knowledge can be gained through real life experiences and linked to a learners’ previous knowledge. The concept of turtle was evolved further at MIT and became the famous Programmable Brick by Fred Martin who also developed new learning environments and methodologies based on this concept (Martin, 1988 and Martin 1994). The unusual idea put forward by the Brick, at least at the time of its invention, was the incorporation of the “design” work into the learning process. Students were not only users in this case, but were actively involved in the design process, while solving their problems (Martin, 1996a). The ‘Brick’ was later adopted and incorporated by the LEGO MINDSTORMS kit (RCX in 1998 and NXT made available in 2006). The use of the name “MINDSTROMS” can also be traced back to the book by Seymour Papert (Papert 1980). Versions of these Bricks for economically challenged communities have also been proposed recently (Sipitakiat, et al, 2004). The active learning methodology (Harmin and Toth, 2006) uses this philosophy of involving students in their own learning through class discussions and group problem solving and proves to be effective at least in certain cases. Robots have become a major player in this area and have been employed in improving the quality and level of student learning, ranging from primary schools to graduate level. As pointed out by Resnick and Martin (Resnick and Martin, 1990), “Creatures built from Electronic Bricks fall on the fuzzy boundary between animals and machines, forcing students to come to terms with how machines can be like animals, and vice versa”. In engineering courses incorporating connectionism approach, the students are asked to design and program a robot for a specific task. They also work in small teams and help and learn from each other. However it is important to know what is currently available to an educator so that he/she can develop the required skills, abilities, attitudes and values in students. In this article we identify some of the major research centres working in the area of education utilizing robots and discuss some of the robotic kits now available to educators. We also comment on the famous robotic competitions worldwide.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Children’s Acceptance of a Collaborative Problem Solving Game Based on Physical Versus Digital Learning Spaces;Interacting with Computers;2018-03-07

2. A Preliminary Study of Robotic Education in Malaysia;Proceedings of the 2nd International Colloquium of Art and Design Education Research (i-CADER 2015);2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3