CSI Based Multiple Relay Selection and Transmit Power Saving Scheme for Underlay CRNs Using FRBS and Swarm Intelligence

Author:

Sultan Kiran1ORCID,Qureshi Ijaz Mansoor2,Rahman Muhammad Atta-ur3,Zafar Bassam A.4,Zaheer Muhammad2

Affiliation:

1. Department of CIT, JCC, King Abdulaziz University, Jeddah, Saudi Arabia

2. Department of Electrical Engineering, Air University, Islamabad, Pakistan

3. College of CS and IT, Department of CS, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

4. Information Systems Department, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

In this article, a multiple relay selection (MRS) scheme for signal-to-noise ratio (SNR) enhancement is proposed for underlay relay-assisted cognitive radio networks (RCRNs). A secondary source-destination pair experiencing deep fading on direct path is assisted by amplify-and-forward (AF) relays in an underlay mode. In this energy-constrained scenario, the aim is to maximize the secondary network's end-to-end SNR through an intelligent power-saving method incorporated with MRS. In contrast to the prior relay selection (RS) schemes, the relay-selection factor is the difference of SNR of the source-relay link and corresponding relay-destination link for each relay along with its corresponding interference channel coefficient. The difference factor aims to achieve the SNR upper bound while performing minimum power amplification, eventually resulting in interference mitigation as well. The proposed algorithm has been implemented using Fuzzy Rule Based System (FRBS), Artificial Bee Colony (ABC) and Particle Swarm Optimization (PSO) and their performance has been compared through simulations.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3